Journal of Organometallic Chemistry, 232 (1982) 219–227 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PHOSPHIN-STABILISIERTE CARBONYLNITROSYLVANADIUM-VERBINDUNGEN: DARSTELLUNG UND SPEKTROSKOPISCHE EIGENSCHAFTEN

JAN SCHIEMANN, ERWIN WEISS^{*}, FRITZ NÄUMANN und DIETER REHDER^{*} Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (B.R.D.)

(Eingegangen den 21. Januar 1982)

Summary

Numerous new complexes of the type $V(CO)_{5 \to n}(NO)L_n$ have been prepared either by nitrosylation of $[V(CO)_{6 \to n}L_n]^-$ (n = 2, 3) with NOX (X = Cl, BF₄) and $[Co(NO)_2Br]_2$, resp., or by reaction of L with "V(CO)₅NO" generated in situ. The compounds comprise n = 1: L = PPh₃, PMe₂H, P(OMe)₃ and Ph₂PCH₂-PPh₂ (dppm); n = 2: L₂ = 2 PMe₂H, 2 PMe₃, 2 P(OMe)₃, dppm, Ph₂P(CH₂)₂-PPh₂, Ph₂P(CH₂)₃PFh₂, Me₂P(CH₂)₂PMe₂, Ph₂As(CH₂)₂AsPh₂, o-C₆H₄(AsMe₂)₂ (diars) and o-C₆H₄(AsPh₂)PPh₂; n = 3: L₃ = 1.5 diars and CH₃C(CH₂PPh₂)₃. IR (CO and NO stretching region) and ⁵¹V NMR spectra are discussed; for n = 2and 3, the positions of the arsine and phosphine ligands relative to NO are either *cis* for all the ligand functions (arsines) or *cis/trans*.

Zusammenfassung

Zahlreiche neue Komplexe des Typs V(CO)_{5-n}(NO)L_n wurden entweder durch Nitrosylierung von [V(CO)_{6-n}L_n]⁻ (n = 2, 3) mit NOX (X = Cl, BF₄) bzw. [Co(NO)₂Br]₂ oder durch Umsetzung von L mit in situ erzeugtem "V(CO)₅NO" dargestellt. Die Verbindungen umfassen n = 1: L = PPh₃, PMe₂H, P(OMe)₃ und Ph₂PCH₂PPh₂ (dppm); n = 2: L₂ = 2 PMe₂H, 2 PMe₃, 2 P(OMe)₃, dppm, Ph₂P(CH₂)₂PPh₂, Ph₂P(CH₂)₃PPh₂, Me₂P(CH₂)₂PMe₂, Ph₂As(CH₂)₂-AsPh₂, o-C₆H₄(AsMe₂)₂ (diars) und o-C₆H₄(AsPh₂)PPh₂; n = 3: L₃ = 1.5 diars und CH₃C(CH₂PPh₂)₃. IR- (CO- und NO-Streckschwingungsbereich) und ^{\$1}V-NMR-Spektren werden diskutiert; für n = 2 und 3 sind die Arsin- und Phosphinliganden bezüglich des NO entweder nur *cis*- (Arsine) oder *cis/trans*-ständig.

Einleitung

Metallcarbonylnitrosyl-Verbindungen der Reihe $M(CO)_nNO$ und deren Derivate sind mit M = Mangan (n = 4) und M = Cobalt (n = 3) schon seit langem bekannt. Das isoelektronische Pentacarbonylnitrosylvanadium wurde dagegen noch relativ wenig untersucht. Hieber et al. [1] erwähnten 1961 die Umsetzung von V(CO)₆ mit NO und schlossen aufgrund IR-spektroskopischer Daten auf die Existenz eines thermisch instabilen V(CO)₅NO.

Als erste stabile Nitrosylverbindung konnte Werner [2] den Komplex V(CO)₄(NO)PPh₃ durch Reaktion von NO mit V(CO)₄(PPh₃)₂ erhalten. Weiterhin beschrieben Hieber und Kummer [3] ein aus "V(CO)₅NO" und Ph₂PPPh₂ erhaltenes, orangefarbenes Bis(tetracarbonylnitrosyl)- μ -tetraphenyldiphosphindivanadium {V(CO)₄NO}₂- μ -Ph₂PPPh₂, welches wegen seiner Zersetzlichkeit nicht näher charakterisiert wurde. Andere Derivate des V(CO)₅NO werden in der Literatur nicht erwähnt.

Bei den nachstehend beschriebenen, systematischen Untersuchungen konnte eine grössere Zahl phosphin-, phosphit- und arsin-substituierter Derivate des $V(CO)_5NO$ isoliert und u.a. spektroskopisch charakterisiert werden. In diesem Zusammenhang wurde auch eine Röntgenstrukturanalyse von $V(CO)_3(NO)$ - $(PMe_3)_2$ durchgeführt [4].

Darstellung

Die Darstellung der Verbindungen gelang nach verschiedenen neuen Verfahren.

A. Präparativ einfach ist die Umsetzung phosphinsubstituierter Carbonylvanadate mit Nitrosyltetrafluoroborat oder Nitrosylchlorid entspr. der Reaktionsgleichung:

 $[Et_4N][V(CO)_4L_2] + NOX \rightarrow V(CO)_3(NO)L_2 + CO + [Et_4N]X$

 $L = PMe_3$; $L_2 = dppe$ (Bis(diphenylphosphino)ethan, $Ph_2PCH_2CH_2PPh_2$), dppm (Bis(diphenylphosphino)methan, $Ph_2PCH_2PPh_2$); $X = BF_4$, Cl.

Ein Vorteil dieses Verfahrens gegenüber der vorher erwähnten Umsetzung nach Werner besteht darin, dass Carbonylvanadate einfacher zugänglich sind als die paramagnetischen $V(CO)_4L_2$ -Verbindungen. Zur Darstellung monophosphinsubstituierter Verbindungen $V(CO)_4(NO)L$ ist Verfahren A nicht geeignet; diese Verbindungen können nach Verfahren B erhalten werden.

B. Aus $[V(CO)_6]^-$ und NOCl wird bei tiefer Temperatur " $V(CO)_5$ NO" erzeugt und in situ mit Phosphinen umgesetzt:

$$[V(CO)_6]^- + NOCl \xrightarrow{-CO, -CI^-} "V(CO)_5 NO" \xrightarrow{L} V(CO)_4 (NO)L + V(CO)_3 (NO)L_2$$

Es wurden auf diese Weise folgende neue Verbindungen dargestellt: $V(CO)_4$ -(NO)P(OMe₃), $V(CO)_4(NO)PMe_2H$, $V(CO)_3(NO)dppe$, $V(CO)_3(NO)[P(OMe)_3]_2$ und $V(CO)_3(NO)(PMe_2H)_2$. Dieses Verfahren eignet sich besonders bei Anwesenheit sehr oxidationsempfindlicher Phosphine, z.B. des PMe₂H.

C. Nach der von Hieber und Kummer zuerst angewandten Methode gelang die Isolierung von $V(CO)_4(NO)$ dppm, $V(CO)_4(NO)P(OMe)_3$ und $V(CO)_3(NO)$ -

 $[P(OMe)_3]_2$ durch die Reaktionsfolge:

$$V(CO)_6 + NO \xrightarrow[0]{\circ}C CO \to V(CO)_5 NO" \xrightarrow{L} V(CO)_4 (NO)L + V(CO)_3 (NO)L_2$$

D. In guten Ausbeuten (um 50%) gelingt die Darstellung auch durch Nitrosylierung phosphinsubstituierter Carbonylvanadate mit Bis(bromodinitrosylcobalt) gemäss dem Reaktionsschema

$$\begin{split} [\operatorname{Et}_4\mathrm{N}] [\operatorname{V}(\mathrm{CO})_{6-n}\mathrm{L}_n] + \tfrac{1}{2} [\operatorname{Co}(\mathrm{NO})_2\mathrm{Br}]_2 \rightarrow \\ & \operatorname{V}(\mathrm{CO})_{5-n}(\mathrm{NO})\mathrm{L}_n + [\operatorname{Et}_4\mathrm{N}]\mathrm{Br} + \operatorname{Co}(\mathrm{CO})_3\mathrm{NO} \end{split}$$

Die folgenden Komplexe konnten auf diesem Wege dargestellt werden: n = 2: $L_2 = dmpe$ (Bis(dimethylphosphino)ethan, Me₂P(CH₂)₂PMe₂), dppe, dpae (Bis-(diphenylarsino)ethan, Ph₂As(CH₂)₂AsPPh₂), dppp (Bis(diphenylphosphino)propan, Ph₂P(CH₂)₃PPh₂), diars (1,2-Dimethylarsinobenzol, o-C₆H₄AsMe₂)₂), pab (1-Diphenylarsino-2-diphenylphosphinobenzol, o-C₆H₄(AsPh₂)PPh₂); n = 3: $L_3 = 1.5$ -diars, cp₃ (2,2,2-Tris(diphenylphosphinomethyl)ethan, CH₃C(CH₂PPh₂)₃). Die Komplexe mit dppp und dpae sind recht labil und können nicht rein isoliert werden.

Übergangsmetallnitrosyle sind gelegentlich schon als NO-Transfer-Reagentien eingesetzt werden, insbesondere bei der Nitrosylierung von Halogenokomplexen des Eisens, Cobalts, Nickels, Rutheniums und Rhodiums. Als NO-Überträger haben dabei vor allem Bis(dimethylglyoximato)nitrosylcobalt [5] und die Nitrosyltriphenylphosphinkomplexe des Cobalts und Rutheniums [6,7] Verwendung gefunden. Braunstein et al. [8] beschreiben Nitrosylierungen verschiedener Carbonylkomplexe mit Bromonitrosylbis(triphenylphosphin)nickel.

Wir haben kürzlich gezeigt, dass Bromodinitrosylcobalt ein geeignetes Nitrosylierungsmittel bei der Darstellung der Komplexe η^5 -C₅H₅V(CO)(NO)₂ und η^5 -C₅H₅V(PR₃)(NO)₂ aus η^5 -C₅H₅V(CO)₄ bzw. η^5 -C₅H₅V(CO)₃PR₃ ist [9]. Während die Umsetzungen mit den Cyclopentadienylverbindungen nur unter UV-Bestrahlung erfolgen, reagieren die anionischen Komplexe bereits ab ca. 200 K, wenn wenigstens zwei CO-Liganden in $[V(CO)_6]^-$ durch Phosphine oder Arsine ersetzt sind. Pentacarbonylkomplexe reagieren nicht. Die relative Stabilität von Pentacarbonylphosphinvanadaten manifestiert sich auch in den früher schon beschriebenen Umsetzungen mit Allylchloriden zu η^3 -Allylverbindungen [10] und bei der Bildung von Hydridokomplexen [11].

Mit den Komplexen $[Et_4N][V(CO)_4dppm]$ und $[Et_4N][V(CO)_4dppb]$ (dppb = $Ph_2P(CH_2)_4PPh_2$) erfolgt ebenfalls keine Reaktion. Die 4- und 7-gliedrigen Chelatringe sind, wie ⁵¹V-NMR-Untersuchungen zeigten [12], sehr energiereich und lassen offenbar das für die NO/CO-Redistribution erforderliche Zustandekommen eines als Zwischenzustand wahrscheinlichen Zweikernkomplexes [8] nicht zu.

IR-Spektren

Tabelle 1 enthält die $\nu(CO)$ und $\nu(NO)$ Absorptionsbanden der dargestellten Verbindungen. Die $\nu(NO)$ -Absorptionen aller phosphin- und arsin-substituierten Verbindungen liegen erwartungsgemäss bei niedrigeren Wellenzahlen als im "V(CO)₅NO" mit $\nu(NO)$ ca. 1700 cm⁻¹ [1].

Für trans-[V(CO)₄(NO)L] (vergl. Fig. 1) sind zwei CO-Banden zu erwarten,

Fig. 1. Geometrische Anordnung der Liganden in den Komplexen $V(CO)_{5-n}L_{n}$. (a) n = 1, (b) und (c) n = 2, (d) und (e) n = 3. (b) ist durch eine Röntgenstrukturanalyse belegt [4]. Die Strukturvorschläge (b) und (d) gelten wahrscheinlich für alle Phosphin-, die Strukturen (c) und (e) für alle Arsin-Komplexe.

wovon in einigen Fällen nur eine beobachtet wird.

In den Tricarbonylkomplexen $V(CO)_3(NO)L_2$ ist für die drei CO-Gruppen grundsätzlich eine *faciale* oder *meridionale* Anordnung möglich. Im ersteren Falle ist die NO-Gruppe *cis*-ständig zu den beiden P- bzw. As-Liganden, im zweiten Falle steht NO in *trans*-Position zu einem dieser Liganden (Fig. 1). Eine Entscheidung aufgrund der IR-Spektren (die Komplexe haben in jedem Falle sehr niedrige C_s -Symmetrie) ist nicht möglich. Von den drei zu erwartenden CO-Absorptionen sind jeweils zwei zu einer breiten, besonders intensiven Bande verschmolzen.

TABELLE 1

IR-SPEKTROSKOPISCHE CO- UND NO-VALENZSCHWINGUNGSBANDEN^a

·····				
Komplex	Phase	ν(CO)		$\nu(NO)$
		(cm ⁻¹)		(cm ⁻¹)
V(CO) ₄ (NO)L				
$L = PPh_3 [2]$	CCl4	1935 vs		1630 s
dppm	CH ₂ Cl ₂	1955 vs		1620 s
PMe ₂ H	Cyclohexan	1976 m,sh	1959 vs	1661 s
P(OMe)3	Cyclohexan	1988 m	1961 vs	1668 s
$V(CO)_3(NO)L_2$				
$L_2 = 2PMe_3$	CH ₂ Cl ₂	2009 m	1914 vs	1582 s
2PMe ₂ H	Cyclohexan	2000 m	1910 vs	1575 s
2P(OMe)3	KBr	2010 m	1925 vs	1610 s
dppm	Film	2000 m	1915 vs	1580 s
			1870 s,sh	
dppe	CH ₂ Cl ₂	2000 m	1920 vs	1590 s
dppe	THF	2004 m	1919 vs	1599 s
dppp	THF	1994 m	1937 vs	1605 s
dmpe	THF	2000 m	1937 vs	1601 s
pab	Nujol	2009 m	1928 vs	1595 s
			1918 sh	1575 sh
			1883 vs	
dpae	THF	1993 m	1924 vs	1590 s
diars	THF	202 m	1943 vs	1597 s
$V(CO)_2(NO)L_3$				
$L_3 = cp_3$	THF	1977 s	1954 s	1573 s
			1930 sh	
1.5-diars 0	THF	1989 vs		1560 s

^a vs = sehr stark, s = stark, m = mittel, sh = Schulter. ^b Im Gemisch mit V(CO)₃(NO)diars.

⁵¹V-NMR Spektren

Sehr deutliche Variationen zeigen die chemischen Verschiebungen der ⁵¹V-NMR-Signale (Tab. 2). Die Resonanzen liegen um —1350 ± ca. 100 ppm (Gruppe I) bzw. um etwa —160 ppm (Gruppe II: arsenhaltige Liganden). Für Arsinkomplexe des Vanadiums wird stets eine relative Entschirmung des ⁵¹V-Kernes gegenüber analog gebauten Phosphinkomplexen von etwa 30 ppm beobachtet, was die geringere Ligandenstärke von Arsinen wiederspiegelt [13]. Die hier beobachtete Differenz von rund 1200 ppm kann aber nur durch wesentliche strukturelle Unterschiede zwischen den zu Gruppe I bzw. II gehörenden Verbindungen erklärt werden.

In Übereinstimmung mit dem Ergebnis der Röntgenstrukturanalyse von $V(CO)_3(NO)(PMe_3)_2$ [4] wird für Phosphinkomplexe (Gruppe I) allgemein eine *meridionale* Ligandenanordnung angenommen. In Komplexen mit Arsinliganden, die einen geringeren *trans*-dirigierenden Effekt ausüben als Phosphine, liegt dann sehr wahrscheinlich eine *faciale* Anordnung der Liganden mit den für die Gruppe II charakteristischen Tieffeldverschiebungen der ⁵¹V-NMR-Signale vor. Interessant ist in diesem Zusammenhang, dass die den Nitrosylkomplexen verwandten Verbindungen (η^3 -Allyl)V(CO)₃L₂ stets *meridionale* Konfiguration haben[14,15]. Dies ist unabhängig davon, ob L₂ ein zweizähniges Phosphin oder Arsin ist, es werden stets die der Gruppe I entsprechenden $\delta({}^{51}V)$ -Werte beobachtet, z.B. η^3 -C₃H₅V(CO)₃dppe: -1492, η^3 -C₃H₅V(CO)₃diars: -1461 ppm.

In ganz entsprechender Weise lassen sich nun die erheblichen Unterschiede der $\delta({}^{51}V)$ -Werte in den Dicarbonylkomplexen erklären: Im V(CO)₂(NO)cp₃ bleibt eine Phosphorfunktion in *trans*-Position zum NO (cp₃ besetzt *faciale* Positionen), im diars-Komplex sind hingegen alle Arsenfunktionen bezüglich des NO *cis*-ständig (die drei AsMe₂-Gruppen besetzen *meridionale* Positionen: vergl. Fig. 1).

Innerhalb der beiden Gruppen werden Trends beobachtet, die auch aus den ⁵¹V-NMR-Spektren anderer Carbonylphosphinvanadiumkomplexe bekannt sind

TABELLE 2

⁵¹ V-NMR-DATEN

Komplex	$\delta(^{51}V) (ppm)^{a}$	J ^b (Hz)	
V(CO)3(NO)L2			<u> </u>
$L_2 = 2PMe_3^{c}$	-1332 ^c (m)	74	
dmpe	—1480 (m)	145	
dppe	—1379 (t)	180	
dppp	1340 ^d	е	
pab	-160^{d}	е	
diars	-187	_	
dpae	-140^{d}		
$V(CO)_2(NO)L_3$			
$L_3 = cp_3$	-1242 ^f	f	
1.5 diars	-269	_	

^a Der absolute Fehler beträgt ± 1 bzw. (mit ^d gekennzeichnete Komplexe) ± 10 ppm; m = Multiplett, t = Triplett. ^b Kopplungskonstante. ^c Im Gemisch mit wenig V(CO)₄(NO)PMe₃, $\delta(^{51}V)$ --1460 ppm. ^d Vergl. experimenteller Teil. ^e Nicht aufgelöste, breite Resonanzen (Halbwertsbreiten um 800 Hz). ^f Multiplett-struktur angedeutet.

[12], nämlich eine Abnahme der Abschirmung (a) mit zunehmender CO-Substitution [V(CO)₄(NO)L > V(CO)₃(NO)L₂ > V(CO)₂(NO)L₃], (b) mit zunehmend behinderter V—P-Überlappung (Chelat-5-Ring > Chelat-6-Ring > offene Strukturen wie im V(CO)₃(NO)(PMe₃)₂) und (c) beim Austausch von Methyl- gegen die schwächer π -bindenden und räumlich anspruchsvolleren Phenylgruppen (V(CO)₃(NO)dmpe > V(CO)₃(NO)dppe; V(CO)₃(NO)diars > V(CO)₃(NO)dpae).

Experimenteller Teil

Spektroskopische Methoden

IR: Perkin—Elmer 225. Die Messungen wurden in den in Tab. 1 angegebenen Phasen in 0.1 mm KBr-Küvetten durchgeführt. Lösungen waren 0.01–0.02 *M*.

⁵¹V-NMR: Bruker WH 90 PFT-Spektrometer bei 23.66 MHz und 298 ± 1 K, Standard: VOCl₃, Lock (extern): Aceton- d_6 ; ca. 0.1 *M* THF oder THF/CH₃CN in 7.5 mm Röhrchen; Pulsbreite 8 μ s. Breite Signale (Halbwertsbreiten >0.5 KHz, in Tab. 2 mit ^d gekennzeichnet): Bruker SWL 3-100 Breitlinien-Spektrometer mit adaptiertem Varian Messkopf V 4230B (8–16 MHz) bei 16.0 MHz und einem Zentralfeld von 1.428 T; ca. 0.1 *&* THF oder THF/CH₃CN in 14 mm Röhrchen, Modulation 40 μ T.

Darstellungsmethoden

Alle Operationen erfolgten unter strengem Sauerstoff- und Feuchtigkeitsausschluss. Die isolierten Komplexe wurden ca. 4 Stunden bei Raumtemperatur und ca. 0.01 Torr getrocknet.

Methode A

Umsetzungen von $[Et_4N][V(CO)_4L_2]$ mit NOBF₄. Eine Lösung von $[Et_4N]$ -[V(CO)₄(PMe₃)₂] [16] (3.1 g, 7.0 mmol) in Acetonitril (100 ml) wird bei 0° C mit festem NOBF₄ (0.9 g, 7.7 mmol) versetzt. Es setzt eine lebhafte CO-Entwicklung ein. Nach 30 Min. Rühren bei 0° C wird das Lösungsmittel bei vermindertem Druck abgezogen und der Rückstand bei 20° C mit inges. 300 ml Toluol mehrfach extrahiert. Das filtrierte Extrakt ergibt nach Einengen bei verm. Druck und Umkristallisation aus 50 ml Hexan dunkelrote Plättchen von V(CO)₃(NO)-(PMe₃)₂ (0.335 g, 15% d. Th). In entsprechender Weise wurden die Verbindungen V(CO)₃(NO)dppe (12% d. Th.) und V(CO)₃(NO)dppm (nur Spuren, charakt. durch IR-Spektrum) erhalten.

Umsetzungen von $[Et_4N][V(CO)_4L_2]$ mit NOCl. Die in einem Glasgefäss befindliche Lösung von $[Et_4N][V(CO)_4dppe]$ [17] (1.3 g, 1.9 mmol) in THF (130 ml) wird bei -7°C unter Rühren mit einer Hg-Hochdruck-Lampe (125 W) bestrahlt. Innerhalb von 10 Min. tropft man eine Lösung von NOCl (0.12 g, 1.9 mmol) in 20 ml THF zu. Dabei erfolgt Dunkelfärbung und CO-Entwicklung. Nach 45 Min. Rühren wird filtriert, das Lösungsmittel bei Raumtemperatur und verminderter Druck abgezogen und der Rückstand mehrfach mit insgesamt 120 ml Toluol extrahiert. Nach Abziehen des Lösungsmittels und Umkristallisieren aus 30 ml Ether erhält man rote Plättchen von V(CO)₃(NO)dppe (0.13 g, 0.23 mmol, 12% d. Th).

Methode B

Umsetzungen von "V(CO)₅NO" mit Phosphinen. Zu einer Lösung von

[Na(diglyme)₂][V(CO)₆] (2.0 g 4 mmol Strem Chemicals Inc + in 50 ml THF tropit man bei -78° C innernalb von 10 Min NOCl (0.26 g, 4 mmol), gelost in 20 ml THF. Es erfolgt lebhafte CO-Entwicklung und Verfarbung nach dunkelrot Anschliessend fugt man innerhalb von 10 Min PMe₂H [18] (0.50 g 8 mmol) in 10 ml THF hinzu und lasst das Gemisch sich auf Raumtemperatu i erwärmen Nach etwa 2 Stunden wird das Losungsmittel bei vermindertem Druck abgezogen und der Rückstand mit insgesamt 150 ml Hexan (ca. 30° C) extrahiert. Aus der auf 30 ml eingeengten Losung kustallisierer bei -30° C orangerote Plattchen von V(CO)₄(NO)(PMe₂H) (0.05 g, 0.2 mmol, 5% d, Th.) Die eingeengte Mutterlauge hefe. ι ca. 20 mg eines roten Öls, welches sich IRspektroskopisch als Gemisch von V(CO)₄(NO)(PMe₂H) und V(CO)₃(NO)-(PMe₂H)₂ erweist

In entsprechender Weise wurden nach Methode B rotes $V(CO)_4(NO)|P-(OMe)_3|$ (0.035 g, 0.11 mmol, 3% d. Th.) und $V(CO)_3(NO)$ appe (0.12 g, 0.2 mmol, 5% d. Th.) erhalten.

Methode C

In eine Losung von V(CO)₆ (10 g, 46 mmol) in 130 mi Cyclonexan leitet man bei 0°C wahrend einigei Minuten NO-Gas (frei von NO₂) ein, worauf sich die Losung dunkelrot faibt. Anstihliessend tropft man unter weiterem Ruhren P(OMe)₃ (109 ml, 92 mmol) zu lässt auf Raumtemperatur ei waimen und ruhrt dabei wahrend weiterei 30 Min. Nach Filtrieien zieht man das Losungsmittel bei verminderter Druck ab, extrahiert den Ruckstand dieimal mit jeweils 50 ml Hexan (30°C) und engt das Filtrat bis auf 50 ml ein. Beim Abkuhlen kristalissienen dunkeliote Nadeln von V(CO)₄(NO)[P(OMe)₃] (0.115 g, 0.36 mmol. 8% d. Th). Aus der weiter eingeengten Mutterlauge erhalt man noch rotes V(CO)₃(NO)[P(OMe)₃]₂ (0.01 g, 0.024 mmol, 0.5% d. Th.).

Nach Methode C wurde auch transprotes $V(CO)_4(NO)dppm$ (0.12 g -0.21 mmol. 4.6% d Th.) erhalten

Methode D

Umsetzungen von $[Et_4N]/V(CO)_{6-n}L_n/mit [Co(NO)_2Br/_2, [Et_4N][V(CO)_{4}]$ dppe] (1 4 g, 2 0 mmol), gelost in einem Gemisch aus 15 m⁴ CH₃CN und 30 ml THF wird in flussiger Luft eingefroren und mit einer Losui g von $[Co(NO)_2Br]_2$ [19] (0.4 g, 1 0 mmol) in 20 ml THF überschichtet. Das S. hlenkichr wird sodarn an ein Quecksilber-Speriventil (20 Torr) angeschlossen und aus dei flussigen Luft entfernt. Die Reaktion setzt ein, sobald nach dem Auftauen (Fer ca. 200 K) eine Vermischung der Lösungen beginnt. Unter Ruhi in wird die Mischung innerhalb etwa einer Stunde auf Raumtemperatur gebracht und danach sogleich Lösungsmittel und Co(CO)₃NO bei Raumtemperatur im Ölpumpenvakuum abgezogen. Der Rückstand wich mit 20 ml 1 HF aufgenommen, von Et₄NBr abfiltriert und mit 20 ml n-Heptan versetzt. Beim Einengen a if ca 30 ml fallt dei grösste Teil des Nitrosylkomplexes als karminiotes, fast ie nes Fulver aus. Ausbeute an Rohprodukt. 900 mg (80%) nach Umfallen aus THF/ Heptan 620 mg (54%) a. Th

Die Komplexe mit dinpe, dppp, dpac, diars pab und cp₃ werden aus den zugrundeliegenden anionischen Komplexen [13,17,20|21] in analoger Weise in Ausbeuten von 40-50% gargestellt im Falle der Umsetzung von $[Et_4N]$ -

Verbindung	Summenformel	Mol Gew	Schrap	Analysen	(Gef (ber)	((%)	!		
		(Det. (Det. /)	3	U U	Ŧ	z	~	As	2
V(CO) ₄ (NO)dppn	C, aH, NOSP,V			64 26	4 90	2 00	 	•	1
	• • • • •	(577 4)		(60 32)	(3 85)	(2 43)			
V(CO)AINO)PMe,H	CAN NO SPY	205 (MS)	36	28 22	2 88	5,43			
	-	(255 1)		(38 25)	(2 77)	(249)			
V(CO) ₃ (NO)P(OMe) ₁	C,HuNO VP	317 (MS)	29	27 53	4 78	2.66	9 54		14 03
		(317 1)		(36 51)	(2 87)	(4 42)	(17 6)		(16 07)
V(CO) _a (NO)dppe	C, aH, NOAP, V		123 (Zers.)	60 81	4 56	3 21	10,29		8 39
	• • • •	(563 3)		(61 82)	(4 30)	(3 49)	(66 0L)		(9,06)
V(CO)2(NO)(PMe2)	CoH18NO1P2V	317 (MS)	68	33 86	588	4.37			14 93
		(3 17 2)		(34 08)	(573)	(4 42)			(16 06)
V(CD) ₂ (NO)[P(OMe), b	CaH, NO, P, V		78	25 82	4 28	3.41			
		(413 2)		(26 16)	(01 1)	(3 39)			
V(CO)+(NO)pdb	C 11 H JAS NO PV			60 32	398	2 24	4 53	11 54	7 88
		(655 4)		(80 48)	(3 69)	(2.14)	(4 73)	(11 43)	(177)
V(CO)2(NO)CP2	C ₄ 3H 3 a hO 2P 2 V			67.98	5 03	1,80	11,80		6.82
		(161 6)		(67 81)	(216)	(184)	(12 20)		(69 9)

ANALYTISCHE DATEN DER DARGESTELLTEN VERBINDUNGEN

TABELLE 3

 $[V(CO)_4dppp]$ kann auf einen Zusatz von CH₃CN verzichtet werden. V(CO)₃-(NO)pab ist nur wenig in THF/CH₃CN löslich und fällt bereits während der Reaktion als ziegelrotes Pulver aus. Die Reaktion mit $[Et_4N][V(CO)_4diars]$ führt zu einem viskosen, roten Öl aus V(CO)₃(NO)diars (Hauptprodukt) und V(CO)₂(NO)(diars)_{1.5}-

Die Schmelzpunkte und analytische Daten der dargestellten Verbindungen sind in Tabelle 3 wiedergegeben.

Dank

Wir danken dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft für Unterstützung durch Sachmittel.

Literatur

- 1 W. Hieber, J. Peterhans und E. Winter, Chem. Ber., 94 (1961) 2572.
- 2 R.P.M. Werner, Z. Naturforsch., B, 16 (1961) 478.
- 3 W. Hieber und R. Kummer, Z. Naturforsch., B, 20 (1965) 271.
- 4 J. Schiemann und E. Weiss, J. Organometal. Chem., 232 (1982) 229.
- 5 C.B. Ungerman und K.G. Caulton, J. Amer. Chem. Soc., 98 (1976) 3862.
- 6 A. Sacco, G. Vasapollo und P. Giannocearo, Inorg. Chim. Acta, 32 (1979) 171.
- 7 A.P. Gaughan, B.J. Corden, R. Eisenberg und J.A. Ibers, Inorg. Chem., 13 (1974) 786.
- 8 P. Braunstein, J. Dehand und B. Munchenbach, J. Organometal. Chem., 124 (1977) 71.
- 9 F. Näumann und D. Rehder, J. Organometal. Chem., 204 (1981) 411.
- 10 U. Franke und E. Weiss, J. Organometal. Chem., 121 (1976) 355.
- 11 U. Puttfarcken und D. Rehder, J. Organometal. Chem., 185 (1980) 219.
- 12 D. Rehder, J. Magn. Reson., 38 (1980) 419; D. Rehder, H.-Ch. Bechthold, A. Keçeci, H. Schmidt und M. Siewing, Z. Naturforsch. B, im Druck.
- 13 W. Roose, D. Rehder, H. Lüders und K.H. Theopold, J. Organometal. Chem., 157 (1978) 311; R. Borowski, D. Rehder und K. von Deuten, J. Organometal. Chem., 220 (1981) 45.
- 14 U. Franke und E. Weiss, J. Organometal. Chem., 139 (1977) 305.
- 15 U. Franke und E. Weiss, J. Organometal. Chem., 168 (1979) 311.
- 16 D. Rehder, W.L. Dorn und J. Schmidt, Trans. Metal. Chem., 1 (1976) 233.
- 17 D. Rehder, L. Dahlenburg und I. Müller, J. Organometal. Chem., 122 (1976) 53.
- 18 A. Trenkle und H. Vahrenkamp, Z. Naturforsch., B, 34 (1979) 642.
- 19 D. Rehder und J. Schmidt, Z. Naturforsch., B, 27 (1972) 625.
- 20 A. Davison und J.E. Ellis, J. Organometal. Chem., 31 (1971) 239; J.E. Ellis und R. Faltynek, ibid., 93 (1975) 205.
- 21 R. Talay und D. Rehder, Z. Naturforsch., B, 36 (1981) 451. D. Rehder und U. Puttfarcken, J. Organometal. Chem., 184 (1980) 343.